The application of neural networks in predicting the outcome of in-vitro fertilization.

نویسندگان

  • S J Kaufmann
  • J L Eastaugh
  • S Snowden
  • S W Smye
  • V Sharma
چکیده

Infertility affects one in six couples at some time in their lives, with 48% of these couples requiring assisted conception techniques in order to achieve a pregnancy. Whilst the overall clinical pregnancy rate per embryo transfer is 23%, this varies widely between clinics. The Human Fertilisation and Embryology Authority has attempted to analyse the results of all units, with weighting of different factors affecting assisted conception, and the published data have invariably led to comparisons between units. However, statistical models need to be developed to eliminate bias for valid comparisons. Neural networks offer a novel approach to pattern recognition. In some instances neural networks can identify a wider range of associations than other statistical techniques due in part to their ability to recognize highly non-linear associations. It was hoped that a neural network approach may be able to predict success for individual couples about to undergo in-vitro fertilization (IVF) treatment. A neural network was constructed using the variables of age, number of eggs recovered, number of embryos transferred and whether there was embryo freezing. Overall the network managed to achieve an accuracy of 59%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Implantation Outcome of In Vitro Fertilization and Intracytoplasmic Sperm Injection Using Data Mining Techniques

Objective The main purpose of this article is to choose the best predictive model for IVF/ICSI classification and to calculate the probability of IVF/ICSI success for each couple using Artificial intelligence. Also, we aimed to find the most effective factors for prediction of ART success in infertile couples. MaterialsAndMethods In this cross-sectional study, the data of 486 patients are colle...

متن کامل

Application of Artificial Neural Network and Genetic Algorithm for Predicting three Important Parameters in Bakery Industries

Farinograph is the most frequently used equipment for empirical rheological measurements of dough. It’suseful to illustrate quality of flour, behavior of dough during mechanical handling and texturalcharacteristics of finished products. The percentage of water absorption and the development time of doughare the most important parameters of farinography for bakery industries during production. H...

متن کامل

Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle

In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Comparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings

Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human reproduction

دوره 12 7  شماره 

صفحات  -

تاریخ انتشار 1997